O problema das micotoxinas em grãos e concentrados para ruminantes
Os fungos toxigênicos utilizam como substrato alimentos de uso animal e humano, e produzem micotoxinas, metabólitos secundários de baixo peso molecular e alta toxicidade (Zain, 2011). Particularmente, grãos e concentrados de origem vegetal são os substratos ideais para o seu crescimento (Yiannikouris e Jouany, 2002). A colonização dos grãos por fungos pode ocorrer antes da colheita ou posteriormente, durante o armazenamento.
EFEITOS NOS RUMINANTES
Os principais gêneros toxicogênicos que contaminam grãos destinados a ruminantes são Fusarium, Aspergillus e Penicillium (Bonifaz, 2012).
Os fungos do gênero Fusarium são amplamente difundidos e geralmente contaminam a cultura ao se desenvolverem antes do armazenamento. Principalmente as culturas de trigo, cevada e milho são contaminadas com estes fungos quando as condições de umidade e temperatura são favoráveis.
Além das perdas agrícolas, diversas espécies produzem micotoxinas que causam intoxicações tanto em ruminantes quanto em humanos e outros animais (Zinedine et al., 2007). As principais toxinas produzidas por este gênero de fungos são as fumonisinas, os tricotecenos e a zearalenona.
• As fumonisinas causam efeitos toxicológicos importantes, uma vez que interferem no metabolismo dos esfingolípidos (Marasas, 1995) e o mais importante, a fumonisina B1, tem sido associada ao aparecimento de cancro do esôfago em humanos (EFSA, 2005). A Agência Internacional de Pesquisa sobre o Câncer (IARC) considera-o um possível carcinógeno humano (grupo 2B).
• Os tricotecenos, o desoxinivalenol (DON) e a toxina T-2, por outro lado, são metabolizados no rúmen em um metabólito muito menos tóxico, portanto dificilmente causam alterações em ruminantes (Eriksen e Pettersson, 2004), embora os autores anteriores destaquem a informação limitada que existe a este respeito.
• A zearalenona possui configuração molecular tridimensional semelhante ao estradiol, por isso pode ocupar seus receptores, estimulando-os e atuando então como desregulador endócrino em machos e fêmeas de diferentes espécies animais (D’Mello et al., 1999, Haschek et al., 2002).
Enquanto isso, fungos das espécies dos gêneros Aspergillus e Penicillium desenvolvem-se principalmente durante o armazenamento. Os Aspergillus são reconhecidos pela sua capacidade de produzir toxinas potentes, como aflatoxinas e ocratoxinas (Navale et al., 2021).
• As aflatoxinas são hepatotóxicas, imunossupressoras, mutagênicas, teratogênicas e carcinogênicas em todas as espécies, incluindo humanos (Zain, 2011), sendo uma delas, a aflatoxina B1, o agente carcinogênico natural mais potente conhecido (Coppock et al., 2018).
• Por sua vez, as ocratoxinas, nefrotóxicas e imunossupressoras, também são produzidas por diversas espécies de fungos do gênero Penicillium (Perrone e Susca, 2017). A ocratoxina A é extremamente potente, mas os efeitos negativos em ruminantes são raros, uma vez que é transformada no rúmen em compostos menos ativos por protozoários (Mobashar et al., 2010).
A Tabela 1 resume os principais efeitos observados pelo consumo de micotoxinas em ruminantes, relatados por Gallo et al. (2015) num trabalho de revisão, confirmando que a informação é relativamente escassa e pouco conclusiva, aspecto que os autores destacam.
Tabela 1. Principais efeitos das micotoxinas em ruminantes observados em trabalho experimental ou de campo (resumido de Gallo et al., 2015).
INÍCIO DA CONTAMINAÇÃO E CONDIÇÕES DE DESENVOLVIMENTO
Os fungos podem crescer nos alimentos sem necessariamente produzir micotoxinas, mas quando confrontados com certos fatores de estresse, sintetizam-nas. Assim, condições climáticas extremas de seca ou umidade, presença de grãos danificados, ou mau manejo da colheita ou armazenamento, são fatores que desencadeiam o estresse e com ele a produção de micotoxinas (Whitlow e Hagler, 2005).
Neste sentido, os fenômenos relacionados com as alterações climáticas parecem estar a modificar os padrões de apresentação dos surtos de micotoxicoses, que estão a surgir em regiões onde antes não ocorriam (Tolosa et al., 2021).
É importante levar em consideração essas variações na amostragem de grãos para detecção de micotoxinas: durante a amostragem deve-se seguir um protocolo específico para o tipo de material e armazenamento, extraindo material de diversas áreas, levando em consideração as diferentes profundidades e alturas.
Segundo este trabalho, 180 dias de armazenamento em sacos seriam ideais para melhorar a fermentação ruminal de grãos de difícil digestão e reduzir a contaminação. Segundo García e Santos et al. (2022), em silos de grãos de sorgo a abundância relativa de Fusarium diminuiu após 30 dias de armazenamento, e em grãos com alto teor de tanino Aspergillus spp diminuiu.
• Essas descobertas abrem uma nova perspectiva sobre possíveis vantagens da utilização de grãos com alto teor de taninos para a confecção de silagens, pelo menos em ambientes com alto risco de contaminação por fungos.
Uma característica das micotoxinas é a sua resistência aos tratamentos de processamento de alimentos. Resistem à secagem, à trituração e são muito estáveis termicamente, pelo que a cozedura dificilmente os elimina (Kabak, 2009). Tudo isso dificulta muito o seu controle, e os nutricionistas sabem que quando se trata de controlar as micotoxinas, “tudo é pouco” em termos de prevenção.
IDENTIFICAÇÃO E QUANTIFICAÇÃO
Para a identificação e quantificação de fungos toxicogênicos contaminantes de alimentos, o isolamento e a identificação morfológica são historicamente realizados de acordo com suas características fenotípicas. Nestes métodos, as colônias desenvolvidas a partir de culturas alimentares isoladas são contadas e transferidas para meios específicos para identificação ao microscópio óptico pelas suas características micro e macromorfológicas de acordo com as chaves de identificação convencionais correspondentes para os principais gêneros de fungos.
Esses métodos são muito trabalhosos, exigem muita experiência e treinamento e também consomem muito tempo. Atualmente, existem métodos moleculares baseados em PCR para identificação e quantificação, que evitam os problemas levantados acima.
Esses métodos permitem a identificação de isolados em nível de espécie através de amplificação e sequenciamento de diferentes genes (Ward et al., 2002; O’Donnell et al., 2004) ou por amplificação com primers específicos (Nicolaisen et al., 2009; Scauflaire et al., 2012).
Para determinar e quantificar as concentrações de micotoxinas nos alimentos, diferentes métodos imunoensaios e cromatográficos podem ser realizados (Díaz e Smith, 2005). Técnicas cromatográficas como cromatografia em camada delgada (TLC), cromatografia líquida (HPLC), cromatografia líquida de ultra-desempenho (UHPLC) e cromatografia líquida – espectrometria de massa (LC-MS).
Este último método LC-MS está sendo amplamente desenvolvido, devido ao seu grande potencial para avaliar grandes quantidades de amostras e diferentes micotoxinas simultaneamente (Krska et al., 2008). Outra metodologia utilizada atualmente é uma técnica imunocromatográfica rápida combinada e integrada.
Este método combina anticorpos numa única tira de membrana, permitindo assim a detecção de vários analitos em apenas alguns minutos. Requer equipamento portátil de cromatografia de fluxo lateral, que permite determinar concentrações de uma ampla gama de micotoxinas nos próprios estabelecimentos.
CONTROLE + PREVENÇÃO
Durante a colheita devem ser evitados danos ao grão, pois o predispõe à contaminação por fungos e micotoxinas. Já no armazenamento, pode ser possível controlar a umidade e a temperatura para que o risco de contaminação possa ser reduzido (Shapira & Paster, 2004). Ambiente ácido e baixa atividade de água são formas eficazes de controlar e inibir o crescimento bacteriano. No entanto, os fungos podem crescer sob uma gama mais ampla de condições físico-químicas do que a maioria das bactérias.
Nos produtos alimentícios, os fungos proliferam em faixas de pH entre 2 e 9, com atividades de água de 0,61 a 0,99 (Snyder et al., 2019). Também no armazenamento podem ser utilizadas substâncias que inibem o crescimento de fungos, mas estas não atuam no conteúdo de micotoxinas caso estas já existam.
Quando os alimentos são contaminados por micotoxinas, uma das estratégias utilizadas para controlá-los é a aplicação de agentes sequestrantes. Estas substâncias são polímeros inorgânicos ou orgânicos de alto peso molecular que reduzem a absorção de micotoxinas no trato digestivo, diminuindo sua toxicidade no organismo animal.
Para isso, os sequestrantes formam complexos irreversíveis com essas toxinas na luz intestinal e são posteriormente eliminados nas fezes (Devegowda e Murthy, 2005). A maioria são compostos orgânicos, inorgânicos ou multimodulares (Díaz e Smith, 2005).