Atualmente, a comunidade científica classifica todas as formas de selênio disponíveis para a nutrição animal em três gerações distintas. A última geração, dos denominados produtos puros, tem ganhado destaque na suplementação animal, apresentando resultados positivos comparados às gerações anteriores. Todos os aditivos pertencentes a essa terceira geração apresentam uma característica comum entre si, todo selênio (Se) disponível nestes produtos está sob formas de selenometionina (SeMet):
Dada a baixa disponibilidade do selênio em forrageiras, cereais e grãos proteicos, a suplementação desse mineral em animais de produção é uma prática comum desde 1970. Durante as últimas décadas, uma quantidade crescente de estudos sugere que a forma de selênio ofertada na dieta determina sua eficiência e dessa maneira influencia o atendimento do requerimento nutricional dos animais.
A principal vantagem em suplementar os animais com SeMet frente às fontes inorgânicas é que, devido à similaridade química entre a metionina e a SeMet, essa última é absorvida e metabolizada como uma molécula de metionina.
Essa característica leva à formação de um depósito inespecífico de Se em cadeias de aminoácidos corporais (i.e. proteínas corporais), que pode ser utilizado posteriormente pelos animais de maneira mais eficiente e segura. Por outro lado, todas as outras formas de Se não criam depósitos de Se e, portanto, qualquer excesso é excretado imediatamente pelos animais e para evitar sua toxicidade. |
Nos últimos meses, uma discussão foi iniciada em relação a possíveis diferenças entre essas fontes. Entre elas, uma das hipóteses comerciais criadas foi que a OH-SeMet, por ser um hidróxi-análogo, apresentaria menor valor biológico em relação a outras fontes.
Dada a diversidade de opções disponíveis, a comunidade científica buscou maneiras de avaliar a eficácia destes diferentes aditivos. Admite-se, no entanto, que a melhor maneira de avaliar a bioeficácia das formas puras de SeMet é pela comparação da deposição de Se nos tecidos animais, sendo a deposição em músculos a referência mais utilizada.
Nos demais tratamentos, as aves alimentadas com a dieta NC foram suplementadas com L-SeMet ou OH-SeMet. As fontes de Se foram suplementadas a 0,3 mg Se/kg, exceto nos tratamentos que receberam L-SeMet e OH-SeMet, onde dosagens crescentes foram utilizadas: 0,15; 0,3; 0,45 e 0,6 mg Se/kg da dieta. Ao final do experimento, 9 animais por tratamento foram amostrados para determinação do teor de Se no músculo do peito, utilizando-se a técnica de espectrometria de massa com plasma indutivamente acoplado (Figura 2).
Um recente trabalho realizado em vacas de leite (Hachemi et al., 2020) objetivou avaliar a deposição de selênio pelos microrganismos ruminais e a concentração de Se no fluido plasmático de animais suplementados por 23 dias com os tratamentos descritos a seguir:
dieta controle negativo, sem suplementação de Se (NC), | |
NC suplementada com 10 mg/kg de Se via selenito de sódio (SS), | |
10 mg/kg de Se como Zn-L-SeMet ou | |
10 mg/kg de Se via OH-SeMet. |
Os pesquisadores submeteram as amostras de fluido rumenal à chamada especiação de selênio, capaz de identificar as formas de Se presentes nas amostras analisadas, incluindo o Se(0) – selênio elementar.
Os autores concluíram que o Se plasmático é influenciado pelo teor de Se no rúmen e pela disponibilidade biológica das fontes de selênio, sendo Zn-L-SeMet e OH-SeMet superiores ao SS. Essa avaliação também mostrou diferença estatística na concentração plasmática de Se entre os grupos Zn-L-SeMet e OH-SeMet, sendo a última fonte a de maior biodisponibilidade (Figuras 3 e 4).
Por fim, um ponto capaz de diferenciar SeMet de terceira geração é a estabilidade das moléculas ao armazenamento em condições ditas normais ou condições aceleradas de avaliação. Levando em consideração as opiniões científicas emitidas e publicadas pela “European Food Safety Authority” (EFSA) temos diferenças importantes entre as três fontes mencionadas.
Dados publicados pela EFSA mostram que a L-SeMet, quando adicionada a um premix vitamínico e mineral, apresentou baixa recuperação após o armazenamento. Os dados mostraram que após 3, 6 e 9 meses, a recuperação da L-SeMet foi de 55, 54 e 37% respectivamente.
Quando a EFSA avaliou a estabilidade da OH-SeMet armazenada por 3, 12 ou 18 meses em condições normais e em condições aceleradas; após 3 meses, encontrou recuperação de 98% para condições normais e 97% para condições aceleradas; para armazenamento por 12 meses, as recuperações foram de 91 e 80%, enquanto para 18 meses os resultados foram 89 e 78%, respectivamente. Na avaliação final deste aditivo, a EFSA deu um parecer favorável à estabilidade da OH-SeMet, por se tratar de selênio em molécula de hidroxi-metionina, a qual é sabidamente estável.
Este tema de estabilidade de fontes de terceira geração de SeMet foi também estudado por Surai et al. (2018), concluindo-se que a OH-SeMet apresenta melhor estabilidade quando comparada às outras duas formas, L-SeMet e Zn-L-SeMet.
Diversas informações novas têm sido lançadas quanto ao metabolismo e ações do selênio nos animais de produção. Atualmente, sabe-se que a molécula de maior valor biológico é a SeMet e fontes que fornecem apenas essa molécula (terceira geração de selênio) já mostraram seu poder superior às gerações anteriores (selênio inorgânico e selenoleveduras).
Entre essas fontes, a OH-SeMet se destaca, por apresentar valor biológico idêntico às demais fontes de terceira geração, porém, com o benefício da maior estabilidade química da molécula.