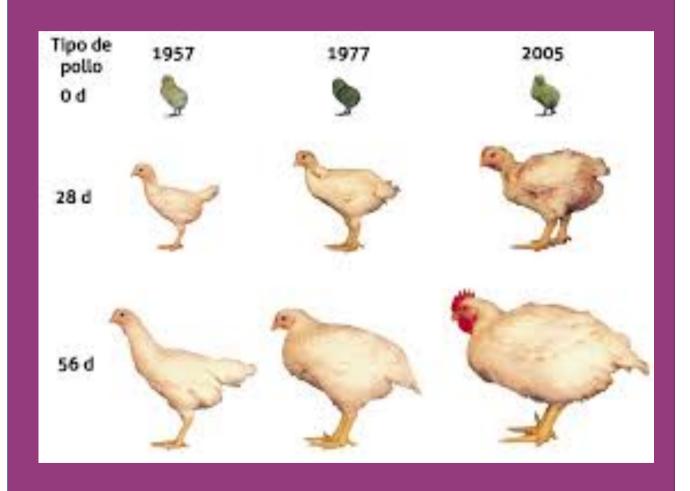


APLICACIÓN DE PROTEÍNAS ALTERNATIVAS FUNCIONALIDAD DEL PLASMA EN AVES Y PORCINO

Ponencia patrocinada por:

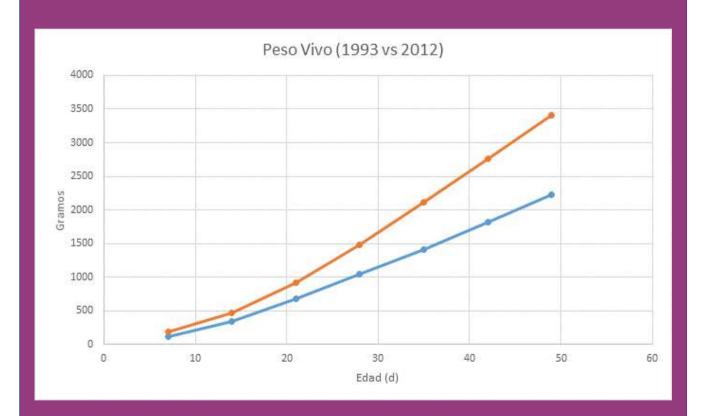
Uso del plasma en aves de primeras edades

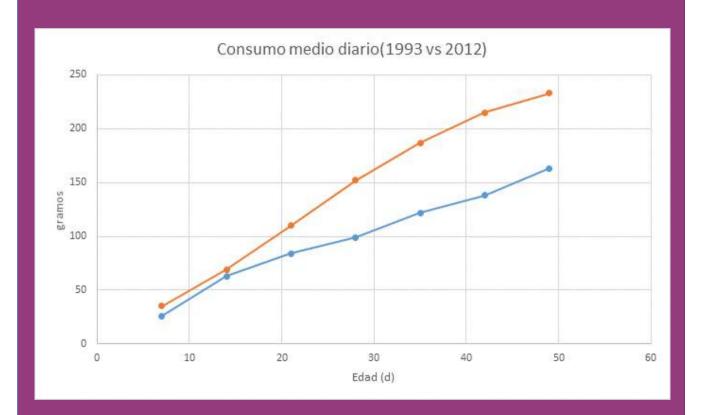
José Ignacio Ferrero Director de formulación en Nutega

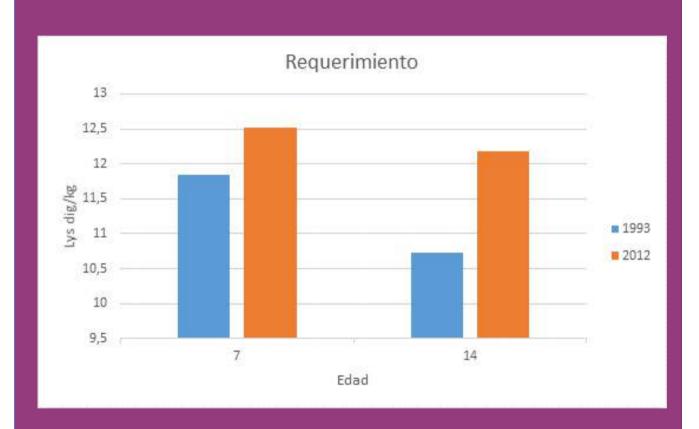

José Ignacio Ferrero

Ingeniero Agrónomo por la universidad politécnica de Madrid. En el ámbito de la Escuela desarrolló varios proyectos de calibración NIRS para predicción de valor nutritivo en piensos y en forrajes.

Se incorporó en 2002 al departamento de formulación de Nutega, desarrollando el trabajo de servicio de formulación para clientes, principalmente para monogástricos. Actualmente ocupa el puesto de Director de formulación.







Según ecuaciones Brasileñas Rostagno, 2005

XF = maximum; others = minimum	1	ME	XF	XI.	LA	XP	DXP	Arg	City	G+S	His	lic :	Leu	Lys	Met	Cys	M+C	Phe	Tyr	P+T	The	Trp	V20
Broiler	CH		60			160	-		-	1					100								
Broiler	DI	12.5				220									4.5								
Broilet	DH	12.6				220							1 1	12.0	5.0		9.0						
Broiler	DII	13.0				230								12.5	5.2	8 1	9.4				0.651		
Broder 1'0-6 wks. per MJ MEn	DK	(7)100				12.5		1.09						0.915			0.621				11.001		
Broiler	YUB		50	50		210								11.5			8.5						
	DI	11.5	STE	200		220.									4.5								
Starter	NL	13.0				Ellina.								11.8		U. U	8.5			4 1			
Starter	TR	12.1				220									4.2	(I							
Startet	14	13.0	23	52		230	208							12.5	5.0		9.1						
Starter intensive	11	12.4		32		194	176		100		10.0	1000		11.0	4.0	53.1	7.5		3.0				L.
Starter semi-intensive		12.6	:63	30		220	176	11.0	11.0		4.4	8.8	15.4	11.1	4.4	3.5		7.7	6.6		7.7	2.2	16.5
Starter 0-2 wks.	BG			30		220	1.00	11.00	100		62	100	7.00	11.0	4.5		8.5		100				
Storter 0-2 wks.	DII	11.4		1	0.1	215		12.1		18.7	4.5	8.9	15.7	11.2	4.7		K.4			15.0	6.2		9.8
Starter 0-2 wks.	F/INRA	12.1				222		12.6		19.4	4.6				4.8		6.7			15.5	7.0		10.1
Starter 0-2 wks.	F/INRA	12.6						13.0		20.0	4.8		1000000		5.0		9.15			16.0	7.2	2.2	100.
Starter 0-2 wks.	F/INRA	13.0				230		13.4			5.0	A DOM:			5.2		0.3			16.5	1.4	2.3	100.0
Starter 0-2 wks.	F/INRA	13.4				237	1.00	13.4		20.0	2/11	9.0	47.00	11.0	1000		11.5			5000		1	1000
Starter 0-2 wks.	N	11.7			10	200 -240	160 -200							15.47			1					150	
Sturrer (I-2 wks.	YUI	12.8				215	-							11.8	5.5		9.3	7.2		13.4	7.5	33	K
Starter 0-3 wks.	BG	19.0				230		14.4		15:0		1000	100000		5.0		9.8				7.4	21	
Sturter 0-3 wky.	CS	11.7	30	40		210		10.5			4.2					2.1	1		7.4		8.1	3	
Sunct to 5 was.	100	-13.4	-35			-230	1 1	-11.5		000		-9.3	-10.1	-11.5		-2.3		7.5		14.0		3.1	
Starter 0-3 wks.	SF	12.6	1			220		12.0		11.0	4.5	8.5	15.5	11.2	4.5		8.1	100		14,0	17.5	-	1 "
	DOM NUME	13.4			110	-230 230		14.4		15.0	3.5	8.0	13.5	12.0	5.0		9.3	7.2		13.4	8.0	2.3	5 5
Starter 0-3 wks.	USA/NRC		50		400	220		1555		77.00	100	1000	1	1000	4.5		8.0						
Starter 0-4 wks.	A	12.15	1 24			220								11.6	5.0		7.6						
Stanter (I-4 wks.	CY	11.9				-222							100	2000	1000		march 1	100	1	1000		100	
	100	-12.1	35	4		220	390	13.0		12.0	5.0	8.0	16.5	11.5	5.5		10.0	9.0	1	14.9			3 10.
Starter 0-4 wks.	PL.	12.5	- 37			2343	195			1000	-277	100	17710	12.0	1 67	1	8.5	1111		0.00	7.5	1.2	
Starter 1-4 wks.	DDR	(590)	1 33			220	1,892	12.0	10.0		4.6	8.4	15.4		3.6	4	8.2	7.7	1	14.5	7.7	2.3	2 9
Starter 1-4 wks.	USSR	13.0	45		1			1400	1000		100	1.000	1990	11.5	100		8.2		1	200	100	192	
Starter 1-4 wks. temp. > 28°C	USSR	13.0	41		:14	230		11.8		1				11.2	4.7	1	8.6		1			2.3	
Starter 1-30 d.	E	12.6	1			210		1,1.8	1				1	10.3	4.1		7.4				1	2.3	3
Starter after 2 wks.	YUII	12.8	100	1	1	200	100	100	100		4.5	1 44	100	11.0	4.0			7.4	6.7	1	7.0	2.5	0 8.
Starter 2-4 wks.	BG	12.6	- 44		1	200	160	11.0	10.0	1	4.1	0.1	14.0	11.5	47		8.4	1	1200			1700	1000
Grower intensive	H	13.0	2	53	1	210	189	1000			1			10:0	3.5		6.3						1
Grower semi-intensive	H	12.3	25	29	1	175	159			200	1 34			1000	4.1		7.1			12.4	5.6	122	9 8
Grower J wks. and more QQ	FINRA	12.1	111		1	187	1500	9.8		15.6			13.1		1		7.4			12.4			9 8
Grower 3 wks. and more 99	FINRA	12.6				194		10.2	1	16.2	3.0	2.1	13.3	9.7	1 4	3	1.4	-		10.0	400	-	-

WPSA, 1988

Requerimientos

XF = maximum; others = minimum		ME	XF	XI.	LA	Χľ	DXP	Arg	Gly	G+S	His	lic	Leu	133	Met	Cys	M+C	Phe	Туг	P+T	The	Trp	Val
Broiler	CH		60			100	10000	electron.	-						100								
Broiler	DI	12.5				220									4.5		20						
Broilet	DII	12.6				220								12.0	5.0		9.0						
Broiler	DII	13.0				230								12.5	5.2	8					0.651		
Broder 1' 0-6 wks. per MJ MEn	DK	(7)19				17.5		1.09						0.91			0.621				11.000		
Broiler	YUB		-50	50		210								11:5			8.5						
Starter	DI	11.5	SITE	100		220								1.00	4.5		20000						
Starter	NL	13.0				GA STORY								11.8	1	4. 4	8.5					- 1	
Starter	TR	12.1	Test			220								1150.5	4.2	k	9.1						
Starter intensive	14	13.0	-23	52		230	208							12.5	5.0								
Starter semi-intensive	н	12.4	23	32		194	176		155		900	333	100	11.0	4.0		1.5	100	23		4.9	2.2	10.0
Starter 0-2 wks	BG	12.6	100	30		220	176	11.0	11.0		4.4	8.8	15.4	11.1	4.4	3.5	-	7.7	6.6		-F. K.	2.2	9.5
Starter 0-2 wks.	DII	11.4		100		220	1000		1000	To sell	201	100	733	11.0	4.5		8.5			42.07	190	2.0	120
Starter 0-2 wks.	E/INRA	12.1				215		12.1		18.7	4.5	8.9		11.2	4.7		K.4			15.0	6.7		
Starter 0-2 wks.	E/INRA	12.6				222		12:6		19.4	4.6	9.2	16.3	11.6	4.8		8.7			15.5	7.0		10.1
	F/INRA	13.0				230		13.0		20.0	4.8	9.5	16.3	12.0	5.0		9.11			16.0	7.7		00.4
Starter 0-2 wks.	F/INRA	13.4				237	1 1	13.4		20.6	5.0	9.6	17.3	12.4	5.2		9.3			16.5	1.4	2.3	Dir. Se
Starter 0-2 wks.	N N	11.7			10	200	160	600,40		-		1	7	11.0	1		8.5						
Starter 0-2 wks.	16	The				-240	-200															150	
	YUI	12.8			11	215	- 2000			100				11.8	5.5		:8.9			0.0	820	2.3	12
Starter (I-2 wks.	BG	15.0				230		14.4		15:0	3.5	8.8	133	12.0	5.0		9.3	7.2		13.4	7.5	2.3	K.2
Starter 0-3 wks.		11.7	30	40	1	210		10.5			4.2	8.4	14.7	10.5	4.2	2.1		7.4			7.4	2.1	9.0
Starter 0-3 wks.	CS		-35			-230	1 3	-11.5			4.6	9.2	-10.	-11.5	4.6	-2.3			-8.1		-8.1	-2.1	
	-	-13.4	-35			220		12.0		11.0	4.5	8.5	15.	11.2	4.5		8.1	7.5		14.0	7.5	2.5	9,5
Starter 0-3 wks.	SF	12.6				-230		12.00		1000	1	100											
					- 10	230		14.4		15.0	3.5	8.0	133	12.0	5.0		9.3	7.2		13.4	8.0.	2.3	8.2
Starter 0-3 wks.	USA/NBC	13.4			1.11			17.7		77.00	555	0.55		1	4.5		8.0						
Starter 0-4 wks.	Α.	12.15	50	1		220								11.6	5.0		7.6						
Starter 0-4 wks.	CY	11.9				229								1000	31/3								
		-12.1				-222	2000	13.0		12.0	5.0	8.0	16	11.5	5.5		10.0	9.0	1	14.0	7.0	2.3	30.0
Starter (I-4 wks.	PL.	12.5	35			220	190			12.0	2.0	0.11	100	12.0	100		8.5	170		100	7.5	2.1	1
Starter 1-4 wks.	DDR	(590)				230	195	12.3	10.0		4.6	8.4	15	11.0	3.6	4	K.2	7.7		14.3	7.7	2.2	97.8
Starter 1-4 wks.	USSR	43.0	45			220		12.0	100		4.0	10.0	3.5	11.5	17.0	1	8.2	11/20	1	255	A0.	0.00	
Starter 1-4 wks, temp. > 28°C	USSR	13.0	41	1	1.19	230	1	1000						11.2	4.7		8.6					2.2	
Starter 1-30 d.	E	12.6	1			210		11.8	1					10.3	4.1		7.4				-	2.2	
Starter after 2 wks.	YUII	12.8	1		1	200	1000	1000	100		100	1000	140	1 TO 100	4.0			2.0	6.7		7.0		8.6
Starter 2-4 wks.	BG	12.6	- 44		1	200	160	11.0	10.0		4.0	8.0	[4]		4.6		8.4	100	1000			1000	3.01
Grower intensive	H	13:0	22			210	189	1000						11.5	3.5		6.5						
Grower semi-intensive	11	12.3	25		1	175	159			1020	200	4	200	10:0			7.1			12.4	5.6	1:9	8.2
Grower J wks. and more QQ	FINRA	12.1	100		1	187	1000	9.8		15.6				9.4	4.1		7.4			12.4	5.8		8.5
Grower 3 wks. and more 99	F/INRA	12.6				194		10.2	-	16.2	3.9	7.6	13.	9.7	4.2	1	7:4			10.4	200	1.0	1000

Requerimientos

WPSA, 1988

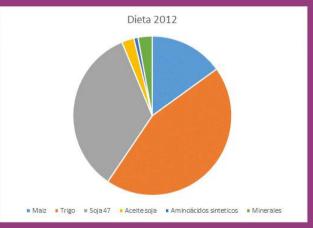
21-22 %PB

12-12,5 g lys/kg pienso

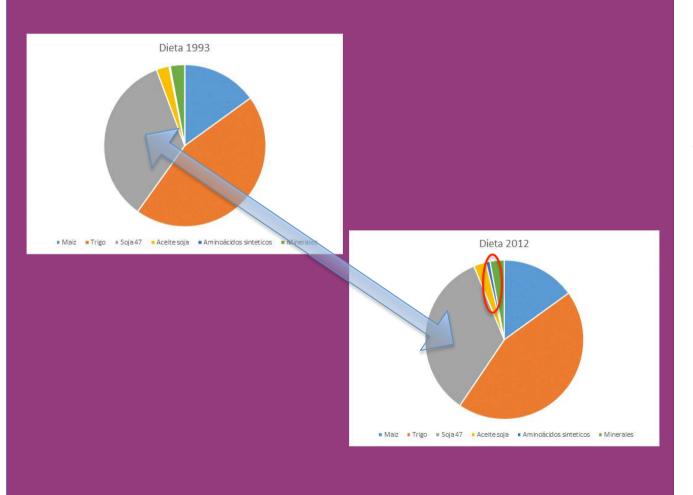
XF = maximum; others = minimum		ME	XF	XI.	LA	Χľ	DXP	Arg	Gly	G+S	His	lic	Leu	133	Met	Cys	M+C	Phe	Туг	P+T	The	Trp	Val
Broiler	CH		60			100	10000	electron.	-						100								
Broiler	DI	12.5				220									4.5		20						
Broilet	DII	12.6				220								12.0	5.0		9.0						
Broiler	DII	13.0				230								12.5	5.2	8					0.651		
Broder 1' 0-6 wks. per MJ MEn	DK	(7)19				17.5		1.09						0.91			0.621				11.000		
Broiler	YUB		-50	50		210								11:5			8.5						
Starter	DI	11.5	SITE	100		220								1.00	4.5	1	20000						
Starter	NL	13.0				GA STORY								11.8	1	4. 4	8.5					- 1	
Starter	TR	12.1	Test			220								1155.5	4.2	k	9.1						
Starter intensive	14	13.0	-23	52		230	208							12.5	5.0								
Starter semi-intensive	н	12.4	23	32		194	176		155		900	333	100	11.0	4.0		1.5	100	23		4.9	2.2	10.0
Starter 0-2 wks	BG	12.6	100	30		220	176	11.0	11.0		4.4	8.8	15.4	11.1	4.4	3.5	-	7.7	6.6		-F. K.	2.2	9.5
Starter 0-2 wks.	DII	11.4		100		220	1000		1000	To sell	201	100	733	11.0	4.5		8.5			42.07	190	2.0	120
Starter 0-2 wks.	E/INRA	12.1				215		12.1		18.7	4.5	8.9		11.2	4.7		K.4			15.0	6.7		
Starter 0-2 wks.	E/INRA	12.6				222		12:6		19.4	4.6	9.2	16.3	11.6	4.8		8.7			15.5	7.0		10.1
	F/INRA	13.0				230		13.0		20.0	4.8	9.5	16.3	12.0	5.0		9.11			16.0	7.7		00.4
Starter 0-2 wks.	F/INRA	13.4				237	1 1	13.4		20.6	5.0	9.6	17.3	12.4	5.2		9.3			16.5	1.4	2.3	Dir. Se
Starter 0-2 wks.	N N	11.7			10	200	160	600,40		-		1	7	11.0	1		8.5						
Starter 0-2 wks.	16	The				-240	-200															150	
	YUI	12.8			11	215	- 2000			100				11.8	5.5		:8.9			0.0	820	2.3	12
Starter (I-2 wks.	BG	15.0				230		14.4		15:0	3.5	8.8	133	12.0	5.0		9.3	7.2		13.4	7.5	2.3	K.2
Starter 0-3 wks.		11.7	30	40	1	210		10.5			4.2	8.4	14.7	10.5	4.2	2.1		7.4			7.4	2.1	9.0
Starter 0-3 wks.	CS		-35			-230	1 3	-11.5			4.6	9.2	-10.	-11.5	4.6	-2.3			-8.1		-8.1	-2.1	
	-	-13.4	-35			220		12.0		11.0	4.5	8.5	15.	11.2	4.5		8.1	7.5		14.0	7.5	2.5	9,5
Starter 0-3 wks.	SF	12.6				-230		12.00		1000	1	100											
					- 10	230		14.4		15.0	3.5	8.0	133	12.0	5.0		9.3	7.2		13.4	8.0.	2.3	8.2
Starter 0-3 wks.	USA/NBC	13.4			1.1			17.7		77.00	555	0.55		1	4.5		8.0						
Starter 0-4 wks.	Α.	12.15	50	1		220								11.6	5.0		7.6						
Starter 0-4 wks.	CY	11.9				229								1000	31/3								
		-12.1				-222	2000	13.0		12.0	5.0	8.0	16	11.5	5.5		10.0	9.0	1	14.0	7.0	2.3	30.0
Starter (I-4 wks.	PL.	12.5	35			220	190			12.0	2.0	0.11	100	12.0	100		8.5	1		100	7.5	2.1	1
Starter 1-4 wks.	DDR	(590)				230	195	12.3	10.0		4.6	8.4	15	11.0	3.6	4	K.2	7.7		14.3	7.7	2.2	97.8
Starter 1-4 wks.	USSR	43.0	45			220		12.0	100		4.0	10.0	3.5	11.5	17.0	1	8.2	11/20	1	255	A-01	0.00	
Starter 1-4 wks, temp. > 28°C	USSR	13.0	41	1	1.19	230	1	1000						11.2	4.7		8.6					2.2	
Starter 1-30 d.	E	12.6	1			210		11.8	1					10.3	4.1		7.4				-	2.2	
Starter after 2 wks.	YUII	12.8	1		1	200	1999	1000	100		100	1000	140	1 TO 100	4.0			2.0	6.7		7.0		8.6
Starter 2-4 wks.	BG	12.6	- 44		1	200	160	11.0	10.0		4.0	8.0	[4]		4.6		8.4	100	1000			1000	3.01
Grower intensive	H	13:0	22			210	189	1000						11.5	3.5		6.5						
Grower semi-intensive	11	12.3	25		1	175	159			1020	200	4	200	10:0			7.1			12.4	5.6	1:9	8.2
Grower J wks. and more QQ	FINRA	12.1	100		1	187	1000	9.8		15.6				9.4	4.1		7.4			12.4	5.8		8.5
Grower 3 wks. and more 99	F/INRA	12.6				194		10.2	-	16.2	3.9	7.6	13.	9.7	4.2	1	7:4			10.4	200	1.0	1000

Requerimientos

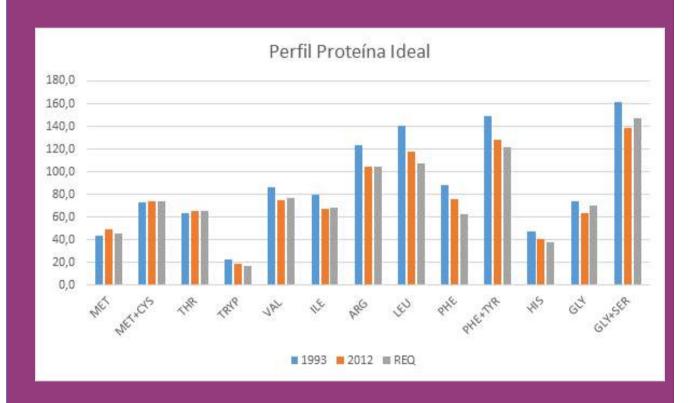
WPSA, 1988


21-22 %PB

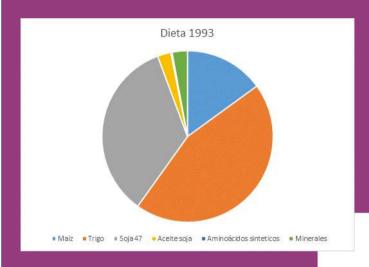
12-12,5 g lys/kg pienso

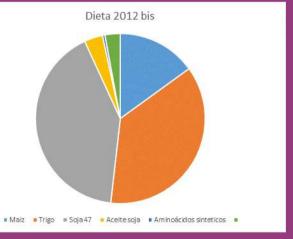


COMPARACIÓN DIETA 2012 VS 1993

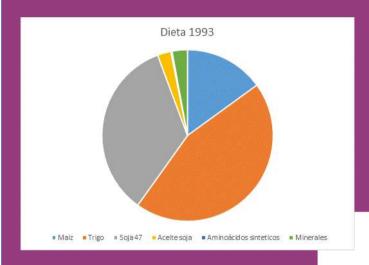


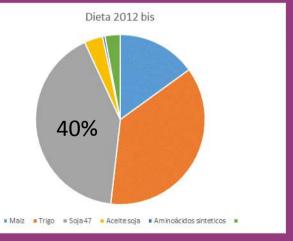
COMPARACIÓN DIETA 2012 VS 1993





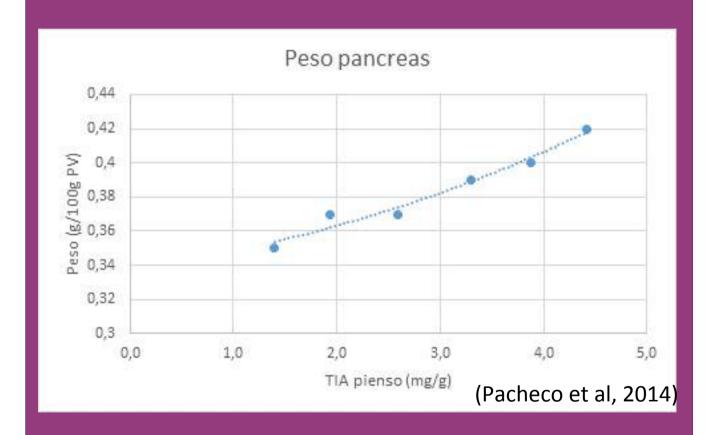
COMPARACIÓN PERFIL 2012 VS 1993



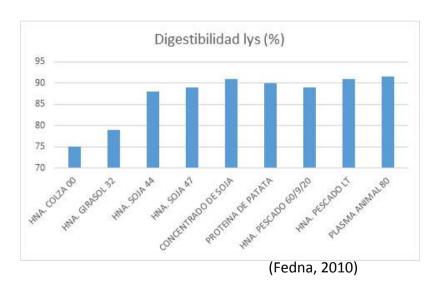


COMPARACIÓN DIETA 2012 VS 1993

COMPARACIÓN DIETA 2012 VS 1993



INHIBIDORES TRIPSINA Y PESO VIVO

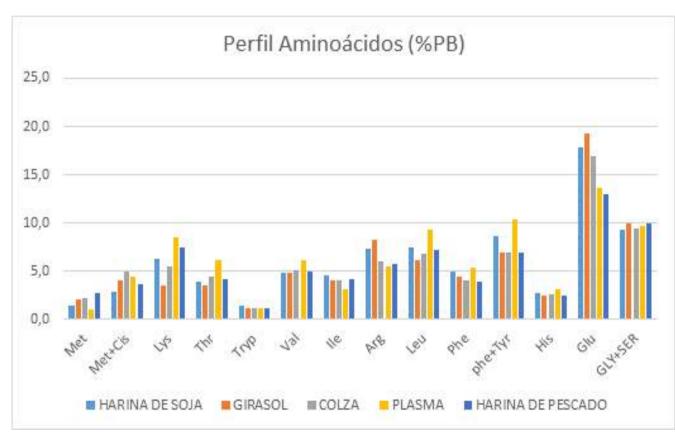


INHIBIDORES TRIPSINA Y PESO PANCREAS

MATERIAS PRIMAS ALTERNATIVAS

PERFIL DE AMINOÁCIDOS COMPLEMENTARIO

ELEVADA DIGESTIBILIDAD



MODERACIÓN NIVELES POTASIO

DESARROLLO INTESTINAL POLLITOS

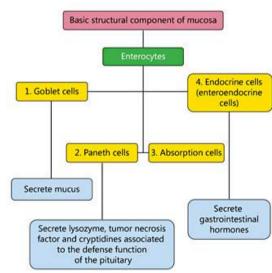
Tras la eclosión:

A las pocas horas los enterocitos aumentan su longitud y se define el borde en cepillo (Geyra *et al*, 2001; Uni *et al*, 2003a; Karcher *et al*, 2008).

A los 2-3 días:

Se definen las Criptas, creciendo en numero y tamaño (Uni et al, 2000; Geyra et al, 2001; Karcher et al, 2008).

Desarrollo de las células calciformes, (productoras de mucina) (Uni *et al*, 2003b; Karcher *et al*, 2008).


A los 7 días:

Se completa el crecimiento de las vellosidades en duodeno

A los 14 días

En yeyuno e íleon (Uni et al., 1998).

Los primeros días la actividad enzimática del borde en cepillo esta relacionada con el numero de enterocitos (Uni, Z, Universidad Hebrea de Jerusalen, 2008).

MEJORA DESARROLLO DIGESTIVO

- **PRESENTACIÓN PIENSO**
- **COMPOSICIÓN PIENSO**
- W Niveles de fibra
- Equilibrio de aminoácidos
- **Enzimas** exógenas
- Ácidos grasos omega 3
- **Ácido Butírico**
- Plasma porcino

DESARROLLO DE MOLLEJA-NIVEL DE FIBRA

		Growth p	erforman	ce ²			Gizzard ³	
Item	ADG, g	ADFI, g	FCR	Energy efficiency	AME _n , ³ kcal/kg	Empty weight, % of BW	Digesta content, % of full organ	pН
Feed form								
Mash	29.1 ^b	37.3 ^b	1.277 ^b	3.97a	3,266ª	2.23a	31.8ª	3.28 ^b
Pelleted	38.6ª	48.1a	1.238a	3.85 ^b	3,247 ^b	1.67 ^b	21.0 ^b	3.87ª
Diet ⁴								
Control ⁵	32.9	41.9	1.237	4.07a	3,209 ^d	1.55 ^d	15.0°	4.10a
Oat hulls, 2.5%	34.0	42.9	1.264	3.95 ^b	3,256 ^c	1.95 ^b	27.8bc	3.47^{bc}
Oat hulls, 5%	33.7	42.2	1.257	3.85°	3,260bc	2.40 ^a	30.9ab	3.20°
Rice hulls, 2.5%	34.2	42.8	1.256	3.92 ^b	3,288ª	1.97 ^b	25.8°	3.57 ^b
Rice hulls, 5%	34.7	43.0	1.264	3.85 ^c	3,243 ^c	2.05 ^b	31.5 ^a	3.54 ^b
Sunflower hulls, 2.5%	33.8	42.1	1.249	3.90 ^b	3,261 ^{bc}	1.70 ^c	21.6 ^d	3.65 ^b
Sunflower hulls, 5%	33.7	42.2	1.252	3.83 ^c	3,280ab	2.03 ^b	32.2ª	3.49bc
SEM ⁶	0.70	0.82	0.0094	0.020	12	0.063	1.68	0.142

Mateos et al, 2012

DESARROLLO DIGESTIVO-EQUILIBRIO DE AMINOÁCIDOS

- Treonina: fuente de mucina, mayor requerimiento en aves infectadas por Clostridium (Star, et al, 2012)
- Incremento de altura de villi (d21) (Chen et al, 2017)

Items	Control	1g/kg Thr	3g/kg Thr
Diamine oxidase (U/mL)	14.1	14.4	11.6
Villus height (μm)			
Jejunum	$1074^{\rm b}$	$1173^{a,b}$	1270^{a}
Ileum	832^{c}	934 ^b	1011 ^a
Crypt depth (μm)			
Jejunum	324	292	288
Ileum	270	263	250
Villus height:crypt depth (μ m: μ m)			
Jejunum	3.33^{c}	$4.02^{\rm b}$	4.43^{a}
Ileum	3.08^{c}	$3.56^{\rm b}$	4.06^{a}

DESARROLLO DIGESTIVO-EQUILIBRIO DE AMINOÁCIDOS

- Glicina+Serina: fuente de mucina, interacción con nivel treonina (Ospina-Rojas et al, 2013)
- Glutamina: combustible enterocitos, esencial bajo condiciones de inflamación.

Treatment ¹	Duodenal villi height	Jejunual villi height
		m) ———
7 d of age		
Corn-SBM	651.49 ^c	526.02 ^c
1% Gln in feed	762.63 ^b	693.72 ^b
4% Gln in feed	921.34 ^a	743.55a
Pooled SEM	34.06	14.61
P-value	0.0001	0.001
14 d of age		
Corn-SBM	706.57 ^b	481.36 ^c
1% Gln in feed	934.09 ^a	697.88 ^b
4% Gln in feed	990.07 ^a	779.80 ^a
Pooled SEM	69.84	25.31
P-value	0.0001	0.0001

Bartell y Batal, 2017

DESARROLLO DIGESTIVO-ENZIMAS EXOGENAS

Altura de villi a 22 d, xilanasa, proteasa y amilasa

	HP maiz	e	ES (mg/l	(g)
	Raw	C-F ^d	0	500
Villus height (μm)		1111		
4	784	790	797	731
8	916	1103	938	905
15	1066	1200	1196	1275
21	1170	1198	1173	1318
Average ^e	1028	1042	1005	1065
			1335	

Gracia et al, 2009

Efecto enzimas sobre viscosidad establecido y claro.

Efecto sobre aprovechamiento nutrientes e IC.

Efecto sobre desarrollo digestivo y prevención enteritis necrótica.

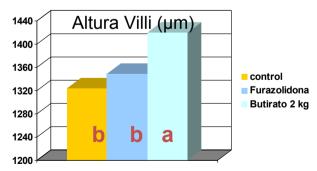
Villi morphology (μm)	Flax10	Flax15
Duodenum		
VH	731.89^{b}	877.53a
VW	101.79^{a}	98.89 ^a
CD	190.79	207.07
VH:CD	$4.03^{\rm b}$	4.41a,b
Jejunum		
VH	$577.61^{\rm b}$	604.35^{b}
VW	$84.57^{\rm b}$	88.50 ^b
CD	$170.96^{\rm b}$	$176.32^{\rm b}$
VH:CD	3.40^{c}	3.66°

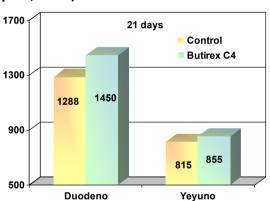
Apperson y Cheria, 2016

OMEGA 3- DESARROLLO INTESTINAL

A. G. omega 3 componentes de la membrana celular.

Mejor recuperación de lesiones en ratas y lechones (Lopez-Pedrosa, 1999)

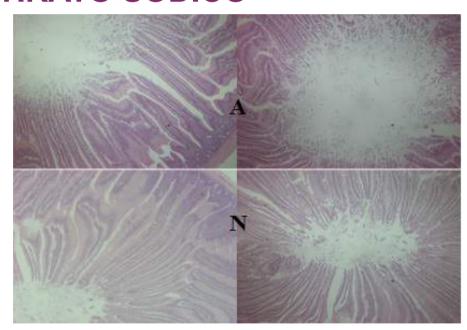

Mejor recuperación de coccidiosis (Korver y Klasing, 1997)



DESARROLLO DE VELLOSIDADES BUTIRATO SÓDICO

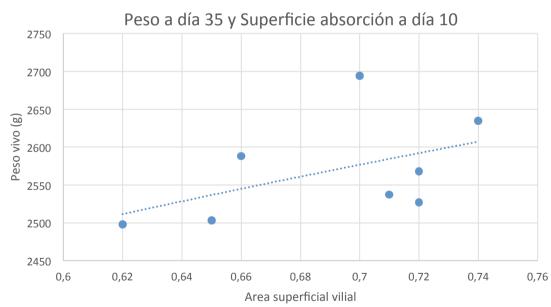
Butirato sobre vellosidades en broilers de 22 días de edad (Panda et al. 2009).

Altura vellosidades (μm) broilers (UPM Spain, 2008)



a,b mean signification P<0.05

DESARROLLO DE VELLOSIDADES BUTIRATO SÓDICO


A : Control

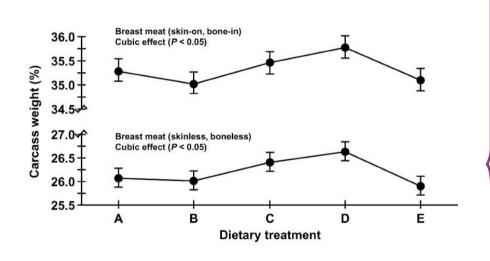
N : Butirato sódico

MEJORA DESARROLLO DIGESTIVO PLASMA- CRECIMIENTO

(Beski et al, 2015)

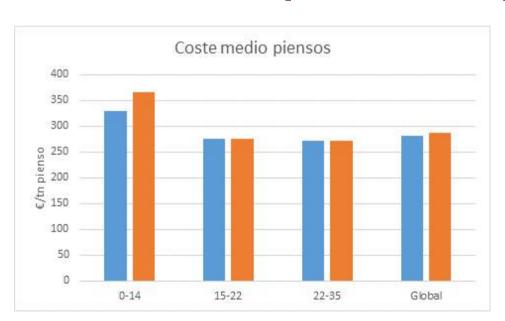
MEJORA DESARROLLO DIGESTIVO PLASMA

Nivel plasma (%)	peso día 10 (g)	peso día 35 (g)	altura villi d24 (um)	IC (d35)
0	278b	2533b	1898,6b	1,625a
0,5	299a	2520b	1885b	1,588ab
1,0	302a	2558b	1967,2a	1,537bc
2,0	308a	2665a	1978,3a	1,493c


(Beski et al, 2015)

EFECTO DE PLASMA SOBRE CALIDAD DE CANAL

Bregendahl et al, 2005


- A: control
- B: plasma 0,5%/0,25%/0,125%
- C: plasma 1%/0,5%/0,25%
- D: plasma 1,5%/0,75%/0,375%
- E: plasma 2%/1%/0,5%

- Efecto sobre rendimiento de pechuga en condiciones sanitarias adversas.
- Probablemente por mejoras en capacidad e absorción y equilibrio de aminoácidos.
- Plasma añadido durante toda la crianza.

Estudio económico dieta 1 edad enriquecida 1% plasma

RESULTADO ECONOMICO DIETA ENRIQUECIDA PLASMA

	Estándar	Plasma	Diferencia (%)
Coste medio Kg pienso (€/kg)	0,282	0,287	1,9
IC	1,625	1,537	-5,4
Coste Kg carne (€/ kg)	0,458	0,442	-3,6

CONCLUSIONES

- Dieta de primera edad incluencia desarrollo digestivo
- Efecto directo sobre crecimiento y aprovechamiento nutrientes.
- Efecto sobre parámetros sanitarios.
- Plasma produce mejoras en desarrollo digestivo y ayuda a controlar nivel de soja.
- Inversión rentable

