
Methanobrevibacter ruminantium
Para leer más contenidos de NutriNews Noviembre 2018
En esta segunda parte del trabajo, analizaremos los resultados que han obtenido los investigadores en los ensayos in vivo y detallaremos con más detenimiento la biohidrogenación de las grasas en el rumen, proceso que como ya vimos es el paso posterior a la lipolisis, primer proceso al que se ven sometidas las grasas que entran al rumen.
Adaptación detoxificante – biohidrogenación
Este proceso se considera como una adaptación detoxificante (Kemp et al., 1984), y contribuye marginalmente a la eliminación de los equivalentes reductores producidos por la fermentación ruminal (Lourenço, et al. 2010).
La biohidrogenación (BH) comprende varios pasos, dependiendo de los AGI, y varias vías, dependiendo de la dieta y el ambiente ruminal (Griinari et al., 1998).
Los protozoos engloban bacterias, y la biohidrogenación bacteriana puede tener lugar dentro de los protozoos (Jenkins et al., 2008) y explicar sus altas concentraciones de productos intermediarios (Devillard et al., 2006).
ESTUDIOS IN VIVO
Más allá de los estudios basados en los aislamientos seleccionados, se han realizado intentos para evaluar in vivo la relación entre bacterias del rumen y la biohidrogenación agregando bacterias y midiendo sus productos, o agregando suplementos dietéticos que se sabe que afectan a la BH y medir la abundancia de bacterias.
Por regla general
Otras observaciones ….
Observaciones sobre la comunidad archeal
Methanobrevibacter ruminantium
Los estudios con cepas puras de arqueas añadiendo ácidos orgánicos o ácidos grasos saturados mostraron una inhibición de la producción de metano por Methanobrevibacter ruminantium.
Sobre el ácido linoléico ….
[registrados]
En conjunto, estos primeros estudios sobre AG saturados y monoinsaturados enfatizaron que los efectos de las grasas sobre las bacterias del rumen dependen del metabolismo bacteriano, la insaturación de los AG y la configuración geométrica de dobles enlaces.
Los efectos negativos de AG sobre B. fibrisolvens son :
+ fuertes para ALA que para AL
++ fuertes para AG de cadena larga eicosapentaenoico (EPA; cis-5, cis-8, cis-11, cis-14, cis-17-C20: 5 ) y los ácidos docosahexaenoico (DHA; cis-4, cis-7, cis-10, cis-13, cis-16, cis-19-C22: 6).
De forma similar, ALA aumenta fuertemente la fase de latencia y disminuye la tasa de crecimiento de Propionibacterium acnesn (Maia et al., 2016).
Efectos sobre las bacterias in vivo
Los efectos de los suplementos de grasa se investigaron in vivo, asignando bacterias a nivel de especie utilizando PCR cuantitativa (Martin et al., 2016; Vargas-Bello-Perez, et al., 2016) o, a nivel de género, utilizando 16S rDNA pirosecuenciación (Zened et al., 2013a; Huws et al., 2014).
En estos últimos se encontraron efectos significativos de la grasa en bacterias aún no cultivadas o no clasificadas.
Estos experimentos se basaron principalmente en la adición de aceite, a diferencia de la mayoría de los estudios sobre cultivos de cepa pura que utilizaron AG libres.
En conjunto, los efectos fueron menores que los observados con cultivos puros, lo que podría deberse al tipo de grasa añadida o al hecho de que los efectos en la fase de latencia no se pueden ver in vivo.
Los cambios en la microbiota ruminal debido a una mayor proporción de concentrado son mucho más altos que los efectos debidos a la adición de grasas, y algunos géneros se vieron afectados de manera diferente por la adición de aceite en dietas de bajo y alto concentrado, especialmente Acetitomaculum, Lachnospira y Prevotella (Zened et al. 2011).
Entre los géneros de bacterias o especies que se estudiaron en varios experimentos, Fibrobacter y Ruminococcus se vieron afectados negativamente en la mayoría de los casos, pero los efectos en Butyrivibio y Prevotella fueron muy variables.
Estos últimos géneros comprenden muchas especies con funciones algo diferentes, diferentes vías metabólicas y diferentes sensibilidades a AG en cultivos (Maia et al., 2007).
Una disminución de la abundancia in vivo de un género bacteriano después de un cambio en la dieta, no se puede interpretar inequívocamente como un efecto directo de una dieta, pero podría reflejar un cambio más global en la degradación de nutrientes y en las relaciones entre los diferentes microorganismos del rumen.
¿Cómo inhiben los AG el crecimiento bacteriano?
Existen varias hipótesis para explicar el mecanismo inhibidor de los AG en el crecimiento bacteriano:
Conclusión y perspectivas
La relación entre los lípidos de la dieta y la microbiota del rumen está dominada por la toxicidad de los AGI en muchos microorganismos, especialmente las bacterias fibrolíticas.
Muchos estudios recientes sugieren que las vías bioquímicas son más complejas y que las bacterias involucradas podrían ser más diversas de lo que se creía hace varias décadas.
Las aplicaciones prácticas involucran ambos lados de esta relación.
Las opciones más adecuadas para dar forma a la microbiota del rumen y su actividad dependen de muchos factores:
Sin embargo, para aplicar estas diferentes manipulaciones en el campo, se deben obtener nuevos datos in vivo en diversas condiciones dietéticas con estudios a largo plazo porque la resiliencia de la microbiota ruminal o su adaptación a la degradación de compuestos de plantas puede alterar los efectos durante tiempo (Weimer 2015).
Además, dirigir nuevas investigaciones aplicadas sobre el metabolismo ruminal de las grasas hace necesario conocer mejor qué microorganismos, qué mecanismos enzimáticos y qué interacciones entre los microorganismos y entre la microbiota y el huésped están involucrados.
[/registrados]