No hay términos de la taxonomía "paises" asociados a este post.
Una demanda creciente de alimento por crecimiento poblacional, provoca que el uso de más y mejores
aditivos sean necesarios
El mercado mundial de enzimas para alimentación animal fue valorado en $ 900 millones en 2014 y se proyecta que alcance los 1,370 millones en 2020 con una tasa de crecimiento anual del 8% para el 2020.
En este escenario mundial Europa domina el mercado, pero se espera que Asia será el nuevo mercado en el futuro próximo debido al creciente consumo de leche y carne en la región, seguido por los países emergentes de Latinoamérica.
España es el segundo país de la UE en cuanto a producción de carne de porcino, tercero en producción de carne de pollo, cuarto en producción de carne de ave, quinto en censo y producción de carne de vacuno, y segundo en censo de ovejas y cabras.
La industria cárnica es el cuarto sector industrial de nuestro país, sólo por detrás de sectores de la dimensión de la industria automovilística o la industria del petróleo y combustibles por ejemplo.
En España, somos grandes productores de trigo y cebada que son destinados a cubrir la demanda de producción de pollo de piel blanca. Es por esta razón que nuestras fórmulas de pollos incorporan grandes cantidades de trigo y cebada.
La pared celular que recubre el endospermo de estos cereales está formada por carbohidratos complejos que se conocen con el nombre de polisacáridos no amiláceos (PNA). La estructura de estas paredes celulares, tanto de cereales como de otros ingredientes de uso común en piensos, es muy compleja y, dependiendo del tipo de materia prima a evaluar, encontraremos que su perfil en PNAs es muy diferente.
Además, en los últimos años ha crecido el uso de subproductos en la alimentación de los monogástricos, como los de la producción de bioetanol, como los DDGS, que presentan una nueva variedad de complejos sustratos.
Es importante comprender que la fracción soluble de estos PNA interfiere en la acción de los enzimas endógenos del animal, limitando la digestibilidad de nutrientes, relentizando el tránsito intestinal y aumentando la viscosidad, esto genera la aparición de heces pastosas que pueden provocar severos problemas de manejo, desordenes intestinales, afectando negativamente la productividad del animal.
Será necesario aplicar estrategias nutricionales en producción avícola y porcina que permitan reducir los efectos negativos de los PNA
Por lo cual nuestro reto, dentro del departamento de I+D de APSA, se centra no sólo en identificar y comprender la complejidad de estas estructuras de PNA sino también de aplicar estrategias nutricionales en producción avícola y porcina que permita reducir los efectos negativos de los PNA y permitan mejorar la disponibilidad nutricional de los piensos mejorando la productividad ganadera con ratios económicos más rentables.
Por un lado, en la alimentación de monogástricos se usan, cada vez más, una amplia composición de ingredientes, avena, centeno, triticale, etc., así como la de subproductos de otras industrias, DDGS, salvado de trigo, gluten, etc. Todo ello conduce a que los PNA que compondrán las dietas animales serán de una enorme complejidad y diversidad y requerirán de la acción de múltiples actividades enzimáticas.
1/ Productos purificados y específicos
Por otro lado, existen en el mercado un sin fin de productos enzimáticos. Muchos de ellos son productos purificados y específicos, con una sola actividad: fitasas y proteasas y, en el caso de las carbohidrasas, xilanasas y/o betaglucanasas puras. Este tipo de producto se basan en una sola enzima con una única actividad que dejarían una gran parte de estos PNA sin opción a ser degradados y digeridos.
2/ Mezclas de enzimas de distinto origen
Asimismo se puede encontrar mezclas de enzimas de distinto origen, que podríamos denominarlos como “cócteles” de enzimas ó premezclas (xilanasas, betaglucanasas, proteasas y amilasas) procedentes de distintas fermentaciones. Aunque tengan mayor capacidad de degradar una fracción
específica de substrato, están limitados a no poder ser efectivos frente a fracciones más amplias del alimento formada por una fracción más compleja.
3/ “Complejos multienzimáticos”
Conscientes de esta problemática, nuestro departamento APSA R&D ha desarrollado su línea de investigación centrado en “complejos multienzimáticos” que aportan mayor actividad multienzimática, pero obtenidos a partir de una misma fermentación y con un único microorganismo.
Existen evidencias que demuestran mayor efecto de los complejos multienzimáticos que el de los cócteles de enzimas, o de las enzimas purificadas.
La explicación está relacionada en que un microorganismo para superar las complejas estructuras celulares de los vegetales, segrega grandes complejos multienzimáticos llamados celulosomas, con varias unidades catalíticas por complejo (Mathlouthi y col., 2002).
La ventaja del complejo multienzimático de un mismo organismo frente a los cócteles enzimáticos es que éste organismo produce una batería de enzimas que trabajan en sinergia: Los enzimas libres atacan la superficie de la pared celular vegetal erosionándola, mientras que los celulosomas atacan las microfibrillas de celulosa individuales, separándolas físicamente de las partículas más grandes y liberando mayor cantidad de nutrientes.
En este caso encontramos en el mercado productos de origen bacteriano, normalmente del género Bacillus y otros de origen fúngico, siendo los más extendidos los procedentes de los géneros Trichoderma y Aspergillus.
Los hongos en general tienen una mayor afinidad por medios donde el pH es ligeramente ácido, al contrario que las bacterias, que tienen una mayor preferencia por pH más alcalinos. He aquí donde radica la principal diferencia, es decir, el diferente comportamiento y por lo tanto una mayor efectividad según sea el pH del medio.
Otro factor a tener en cuenta cuando se trata de productos de fermentación, es si hemos utilizado la ingeniería genética para potenciar la capacidad productora de enzimas de un microorganismo u otro, independientemente de que sean bacterias u hongos.
Las cepas modificadas genéticamente aportan algunas ventajas pero varias desventajas respecto a las enzimas producidas por cepas “No-OGM”.
1/ Los enzimas producidas por microorganismos OGM pierden aquellas enzimas auxiliares y otros factores que son esenciales en la degradación de los substratos complejos que encontramos en las distintas materias primas con las que formulamos nuestros piensos.
2/ Los enzimas de origen OGM producen una sola isoenzima; es decir, se pierde otras formas espaciales del mismo enzima que, aún actuando sobre un mismo substrato, tienen diversas cinéticas y configuraciones, lo que conlleva a una pérdida de diversidad. Además isoenzimas suelen diferir en el pH en el que actúan, con lo que se reduce el espectro de acción del enzima.
Los hongos en general tienen una mayor afinidad por medios donde el pH es ligeramente ácido, al contrario que las bacterias
En el caso de enzimas de origen fúngico obtenidas a partir de fermentaciones no OGM, y más en concreto a partir del genero Aspergillus, se ha comprobado que además de contener una alta concentración en enzimas betaglucanasas y xilanasas, éstas ejercen también otras actividades secundarias, entre las que podemos mencionar aquellas de tipo celulasas, hemicelulasas y sobre todo del tipo alfa- galactosidasas y betamananasas; es decir, actúan sobre un mismo substrato, con diversas cinéticas y configuraciones, en concreto sobre la serie de la rafinosa (verbacosa y estaquiosa), lo que conlleva a un aumento en la degradación del substrato con mayor eficiencia.
En un sector cada vez más sometido a los cambios en los precios de las materias primas y donde la búsqueda de productos alternativos puede abaratar los costes de formulación, los productos multienzimáticos.
pueden ser una herramienta de gran utilidad en el abaratamiento de la formulación y en la flexibilización de la misma, al permitir usar diversas materias primas sin tener que cambiar el producto enzimático.
Por lo tanto y para poder sacar el mayor rendimiento a nuestro pienso la elección de aquel complejo enzimático que sea capaz de extraer el máximo de nuestras materias primas será esencial.
Para finalizar y a modo de conclusión, existe todavía mucho espacio para el desarrollo a nivel práctico de los complejos enzimáticos que tenemos disponibles en el mercado. No todos los enzimas (carbohidrasas) son iguales, como hemos visto, y ante un panorama cada vez más competitivo, Andrés Pintaba S.A. ofrece al mercado un programa de complejos multienzimáticos capaz de “trabajar” sobre un amplio abanico de substratos de tal manera que se obtenga mayores rendimientos y/o un mayor abaratamiento de nuestras fórmulas.
Suscribete ahora a la revista técnica de nutrición animal
AUTORES
Informe de materias primas ASFAC
ASFACMascotas y Vitamina A: conocimientos clave para su bienestar
Rafael CrouzetDietas ricas en almidón: clave para optimizar la calidad de la carne bovina
Procesos fisiológicos alrededor del destete de los rumiantes (Parte II)
Fernando Bacha BazL-metionina: una fuente de metionina altamente bioeficiente en pollos
LECIFEED®, una fuente de energía para ahorrar costes en fórmula
Mejoras en la sinergia de la eficiencia energética en aves
Evolución de las recomendaciones nutricionales para reproductoras pesadas
Dr. Luis TavaresNatupulse TS: máxima estabilidad y eficiencia para el éxito
Elena MorenoManejo de lechones pequeños: ¿Cómo evitar llegar al sacrificio?
Dr. Yron MANAIGEstrés y calidad de carne en nutrición porcina: ¿cómo funciona?
Suplementación con probióticos para mejorar la calidad de los lechones
Olivier MerdyMicrobiota intestinal: Modulación en lechones
Roberto BareaProporción ideal de aminoácidos y lisina mejora rendimiento inmunológico
Luciano HauschildImpacto del destete y estrés en el lechón
Grasas oxidadas en porcinos: riesgos y consideraciones (Parte 2/3)
María Alejandra Pérez AlvaradoDietas isoproteicas con distinta energía: efectos sobre la canal
Lourdes CámaraGrupo PH-Albio: 35 años de innovación en salud y nutrición animal
Tecnología Jefo Matrix
Marine DewezEfectos nocivos de los alfa-galactósidos de la soja, y cómo revertirlos
Sergi CarnéComplejos enzimáticos de origen fúngico: Una revolución constante
Meryem El KissiMELAZAS: Ficha de materia prima
Alba Cerisuelo